13 research outputs found

    Deep Active Learning for Named Entity Recognition

    Get PDF
    Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data

    Bayesian Model of Categorical Effects in L1 and L2 Speech Processing

    No full text
    In this dissertation I present a model that captures categorical effects in both first language (L1) and second language (L2) speech perception. In L1 perception, categorical effects range between extremely strong for consonants to nearly continuous perception of vowels. I treat the problem of speech perception as a statistical inference problem and by quantifying categoricity I obtain a unified model of both strong and weak categorical effects. In this optimal inference mechanism, the listener uses their knowledge of categories and the acoustics of the signal to infer the intended productions of the speaker. The model splits up speech variability into meaningful category variance and perceptual noise variance. The ratio of these two variances, which I call Tau, directly correlates with the degree of categorical effects for a given phoneme or continuum. By fitting the model to behavioral data from different phonemes, I show how a single parametric quantitative variation can lead to the different degrees of categorical effects seen in perception experiments with different phonemes. In L2 perception, L1 categories have been shown to exert an effect on how L2 sounds are identified and how well the listener is able to discriminate them. Various models have been developed to relate the state of L1 categories with both the initial and eventual ability to process the L2. These models largely lacked a formalized metric to measure perceptual distance, a means of making a-priori predictions of behavior for a new contrast, and a way of describing non-discrete gradient effects. In the second part of my dissertation, I apply the same computational model that I used to unify L1 categorical effects to examining L2 perception. I show that we can use the model to make the same type of predictions as other SLA models, but also provide a quantitative framework while formalizing all measures of similarity and bias. Further, I show how using this model to consider L2 learners at different stages of development we can track specific parameters of categories as they change over time, giving us a look into the actual process of L2 category development

    Pattern formation in biological systems.

    No full text
    Mathematicians and biologists have presented various models to describe patterns found in biological systems. In 1952, Alan Turing proposed a reaction-diffusion model where diffusion acts as a destabilizing effect, leading to pattern formation. This idea of diffusive instability is contrary to the typical notion of diffusion as a smoothing influence. Using linear stability analysis and numerical simulations, we investigate pattern formation caused by diffusive instability. By varying properties of the system, we simulate patterns found in nature

    The digital divide in Worcester.

    No full text
    This IQP focuses on a review of the technology gap that is growing between various socioeconomic groups throughout the world, the United States, and locally in Worcester County. Certain people, the technology haves, possess the best information technology that society has to offer. This opens to them a wealth of information. The technology have-nots lack these resources, and as such, lack the resources to succeed in the new information-based economy. The result has been dubbed the digital divide

    Improving Translation via Targeted Paraphrasing

    No full text
    Targeted paraphrasing is a new approach to the problem of obtaining cost-effective, reasonable quality translation that makes use of simple and inexpensive human computations by monolingual speakers in combination with machine translation. The key insight behind the process is that it is possible to spot likely translation errors with only monolingual knowledge of the target language, and it is possible to generate alternative ways to say the same thing (i.e. paraphrases) with only monolingual knowledge of the source language. Evaluations demonstrate that this approach can yield substantial improvements in translation quality.
    corecore